E sempre importante entender os processos que seu aplicativo esta fazendo para
executar o resultado esperado, mas muitas vezes o que queremos é ter algo em
maos, um produto para testar logo e validar uma ideia. Nesse ponto de vista, seguir
o BLoC Pattern de ponta a ponta pode parecer contraintuitivo, muito verboso e até
mesmo desnecessario.

BLoCé um padrado que utiliza Streams para adicionar reatividade aos componentes
de uma aplicacao.

Pode ficar tranquilo, com abstracdes simples, vocé vai perceber que vale a pena e
vai te ajudar a enxergar de maneira mais clara o ciclo de vida da sua aplicacao.

Uma pincelada antes da
pratica

Com as Streams do Dart (Linguagem de programacao utilizada para o Flutter),
conseguimos criar canais de comunicacao através de eventos, e com esses canais,
programar de forma reativa nossa aplicacao.

Podemos imaginar a Stream como uma fila, onde podem ser inseridas informacodes
de todos os tipos, inclusive outras Streams, veja uma representacao:

(]

O StreamController é a classe responsavel por cuidar dessa estrutura, com ela é
possivel criar uma nova entrada ou consumir um dado presente, respectivamente,
utilizando as propriedades StreamController.sink (para inserir dados)

e StreamController.stream (para consumo).

Portanto, o padrao consiste em:

1. Mapear as funcionalidades e criar streams para cada contexto;

2. Criar builders ouvindo essas streams e encapsulando Widgets que serao
atualizados dinamicamente;

3. Disparar eventos através da Ul do seu APP para estas Streams (sink.add());


https://www.didierboelens.com/2018/08/reactive-programming---streams---bloc/
https://api.dart.dev/stable/2.1.0/dart-async/StreamController-class.html

4. Criar uma interceptacao através de um StreamTransformer, para executar os
eventos disparados e publicando novos dados, notificando os builders.

Podemos observar que criando canais para disparo de eventos, conseguimos
interceptar para fazer requisicdes e alterar o estado dos componentes sem precisar
renderizar toda a arvore de Widgets, gerando uma performance melhor.

Abstraindo para ganhar
velocidade

E um padrdo sensacional, mas que pode parecer confuso a primeira vista, n3o se
preocupe, existem muitos conceitos de reatividade que podem nao ser tao
tranquilos assim, mas nao abandone.

Vocé pode ir estudando cada detalhe desses processos mais a fundo enquanto ja
utiliza em seus projetos, para isso vamos utilizar uma biblioteca, a BLoC Library.

Essa biblioteca cria uma camada de abstracao sobre as streams do Dart, facilitando
a implementacao do padrao e dando uma visibilidade absurda sobre o lifecycle das
suas funcionalidades. Dentre os pacotes contidos na biblioteca, vamos utilizar

o bloc e o flutter bloc.

Vocé precisa ter o Flutter instalado e configurado na sua maquina pra
seqguir os préximos passos. Agqui vocé descobre como.

Passo 1: Novo App

E sé rodar o famoso flutter create <app>, adicionar os pacotes bloc e flutter bloc
no seu pubspec.yaml, e instalar os pacotes rodando o comando flutter pub get.

]

Nosso pubspec.yaml com os pacotes.


https://bloclibrary.dev/#/
https://github.com/felangel/bloc/tree/master/packages/bloc
https://github.com/felangel/bloc/tree/master/packages/flutter_bloc
https://flutter.dev/docs

Passo 2: Estruturando nosso BLoC

Vamos criar um BLoC simples para o nosso contador, e matar o setState contido
nele por padrao.

Podemos adicionar um arquivo counter-bloc.dart dentro da nossa pasta lib, que vai
conter:

1. Um enum para identificacao do tipo de evento que estamos recebendo.

2. A classe principal da nossa estrutura, que ja utiliza o pacote que adicionamos.

3. O método mapEventToState, responsavel por interceptar nossos eventos e
retornar estados para nossa Ul.

Nosso arquivo ficou
assim:https://medium.com/media/3024eeacb4d7d213ff6b74107fe2064d

Antes de escrever nossa légica, precisamos adicionar um BlocProvider a nossa
aplicacdo, apontando o BLoC que queremos utilizar. Isso sera feito no
arquivo main.dart.

Assim, nossa classe MyApp (lib/main.dart), toma a seguinte
forma:https://medium.com/media/0f237df754a39d137elaaf6cf495chb40

Vamos voltar ao nosso BLoC, e adicionar uma condicional para cada evento que
chegar ao nosso método mapEventToState, se o evento for de entrada, vamos
somar 1 ao state atual, se for saida é s6 subtrair.

Por fim, nosso BLoC ficara dessa
maneira:https://medium.com/media/bc031284e25cef7394e79bbd6c390198

No arquivo main.dart, sé precisamos substituir o counter local pelo nosso BLoC,
encapsulando o Widget que escutard o estado em um BlocBuilder (Que recebe
nosso BLoC vindo do contexto), e alterando a fungao onPressed do floating button
para adicionar um evento ao BLoC ao invés de chamar um setState.

Com essas alteracdes nosso arquivo main.dart fica assim:

E como podemos ver, nossa aplicacdo ja estd com seu ciclo de vida funcionando
através do BLoC de maneira simples, pratica e intuitiva.



(]

Por fim

Como deixamos de utilizar o setState do Widget, o Flutter nao ird renderizar
novamente toda a arvore de Widgets cada vez que o estado mudar, pois sé 0s
Widgets que estao encapsulados no Builder escutam essas alteracodes. Isso nos
deixa com uma performance melhor e com muito mais controle dos itens dinamicos

na nossa interface do usuario.

Gostou do artigo se sim compartilhe e ajude o Flutter a crescer.



