
É sempre importante entender os processos que seu aplicativo está fazendo para
executar o resultado esperado, mas muitas vezes o que queremos é ter algo em
mãos, um produto para testar logo e validar uma ideia. Nesse ponto de vista, seguir
o BLoC Pattern de ponta a ponta pode parecer contraintuitivo, muito verboso e até
mesmo desnecessário.

BLoCé um padrão que utiliza Streams para adicionar reatividade aos componentes
de uma aplicação.

Pode ficar tranquilo, com abstrações simples, você vai perceber que vale a pena e
vai te ajudar a enxergar de maneira mais clara o ciclo de vida da sua aplicação.

Uma pincelada antes da
prática
Com as Streams do Dart (Linguagem de programação utilizada para o Flutter),
conseguimos criar canais de comunicação através de eventos, e com esses canais,
programar de forma reativa nossa aplicação.

Podemos imaginar a Stream como uma fila, onde podem ser inseridas informações
de todos os tipos, inclusive outras Streams, veja uma representação:

O StreamController é a classe responsável por cuidar dessa estrutura, com ela é
possível criar uma nova entrada ou consumir um dado presente, respectivamente,
utilizando as propriedades StreamController.sink (para inserir dados)
e StreamController.stream (para consumo).

Portanto, o padrão consiste em:

Mapear as funcionalidades e criar streams para cada contexto;1.
Criar builders ouvindo essas streams e encapsulando Widgets que serão2.
atualizados dinamicamente;
Disparar eventos através da UI do seu APP para estas Streams (sink.add());3.

https://www.didierboelens.com/2018/08/reactive-programming---streams---bloc/
https://api.dart.dev/stable/2.1.0/dart-async/StreamController-class.html


Criar uma interceptação através de um StreamTransformer, para executar os4.
eventos disparados e publicando novos dados, notificando os builders.

Podemos observar que criando canais para disparo de eventos, conseguimos
interceptar para fazer requisições e alterar o estado dos componentes sem precisar
renderizar toda a árvore de Widgets, gerando uma performance melhor.

Abstraindo para ganhar
velocidade
É um padrão sensacional, mas que pode parecer confuso a primeira vista, não se
preocupe, existem muitos conceitos de reatividade que podem não ser tão
tranquilos assim, mas não abandone.

Você pode ir estudando cada detalhe desses processos mais a fundo enquanto já
utiliza em seus projetos, para isso vamos utilizar uma biblioteca, a BLoC Library.

Essa biblioteca cria uma camada de abstração sobre as streams do Dart, facilitando
a implementação do padrão e dando uma visibilidade absurda sobre o lifecycle das
suas funcionalidades. Dentre os pacotes contidos na biblioteca, vamos utilizar
o bloc e o flutter_bloc.

Você precisa ter o Flutter instalado e configurado na sua máquina pra
seguir os próximos passos. Aqui você descobre como.

Passo 1: Novo App
É só rodar o famoso flutter create <app>, adicionar os pacotes bloc e flutter_bloc
no seu pubspec.yaml, e instalar os pacotes rodando o comando flutter pub get.

Nosso pubspec.yaml com os pacotes.

https://bloclibrary.dev/#/
https://github.com/felangel/bloc/tree/master/packages/bloc
https://github.com/felangel/bloc/tree/master/packages/flutter_bloc
https://flutter.dev/docs


Passo 2: Estruturando nosso BLoC
Vamos criar um BLoC simples para o nosso contador, e matar o setState contido
nele por padrão.

Podemos adicionar um arquivo counter-bloc.dart dentro da nossa pasta lib, que vai
conter:

Um enum para identificação do tipo de evento que estamos recebendo.1.
A classe principal da nossa estrutura, que ja utiliza o pacote que adicionamos.2.
O método mapEventToState, responsável por interceptar nossos eventos e3.
retornar estados para nossa UI.

Nosso arquivo ficou
assim:https://medium.com/media/3024eeacb4d7d213ff6b74107fe2064d

Antes de escrever nossa lógica, precisamos adicionar um BlocProvider à nossa
aplicação, apontando o BLoC que queremos utilizar. Isso será feito no
arquivo main.dart.

Assim, nossa classe MyApp (lib/main.dart), toma a seguinte
forma:https://medium.com/media/0f237df754a39d137e1aaf6cf495cb40

Vamos voltar ao nosso BLoC, e adicionar uma condicional para cada evento que
chegar ao nosso método mapEventToState, se o evento for de entrada, vamos
somar 1 ao state atual, se for saída é só subtrair.

Por fim, nosso BLoC ficará dessa
maneira:https://medium.com/media/bc031284e25cef7394e79bbd6c390198

No arquivo main.dart, só precisamos substituir o counter local pelo nosso BLoC,
encapsulando o Widget que escutará o estado em um BlocBuilder (Que recebe
nosso BLoC vindo do contexto), e alterando a função onPressed do floating button
para adicionar um evento ao BLoC ao invés de chamar um setState.

Com essas alterações nosso arquivo main.dart fica assim:

E como podemos ver, nossa aplicação já está com seu ciclo de vida funcionando
através do BLoC de maneira simples, prática e intuitiva.



Por fim
Como deixamos de utilizar o setState do Widget, o Flutter não irá renderizar
novamente toda a árvore de Widgets cada vez que o estado mudar, pois só os
Widgets que estão encapsulados no Builder escutam essas alterações. Isso nos
deixa com uma performance melhor e com muito mais controle dos itens dinâmicos
na nossa interface do usuário.

Gostou do artigo se sim compartilhe e ajude o Flutter a crescer.


