Hoje trago para vocés como realizar a configuracao para envio de logs
“padronizados”.

Inicialmente essa configuracao foi pensada para enviar os logs para o Dynatrace,
porem a mesma pode ser aproveitada para outras ferramentas como ElasticSearch,
DataDog, etc... Pois foi estruturado um “padrao”.

O porque do padrao? Simples dessa forma conseguimos ter um log
consistente que pode ser processado por diversas ferramentas, sem uso
de pipelines adicionais, simplificando a pesquisa, criacao de métricas,
dashboards e até mesmo o reaproveitamento dos logs para consulta
externa por uma API e por fim o principal e mais importante a reducao de
custos.

No link abaixo temos o repositério da aplicacao em que foi desenvolvida, fique a
vontade para acompanhar ou fazer o download para facilitar o entendimento.

Link: https://github.com/rafapil/AppFinanceiro
Mas antes de iniciar vamos fazer os imports necessarios para o envio de logs
IMPORTANTE: No exemplo a seguir estou usando o Kotlin na versao 1.9.0

No arquivo build.gradle.kts (nivel projeto), adicione o valor abaixo para que a
serializacao funcione corretamente:

kotlin("plugin.serialization") version "1.9.0"
Exemplo:

plugins {
alias(1libs.plugins.android.application) apply false
alias(1libs.plugins.jetbrains.kotlin.android) apply false

4
}

kotlin("plugin.serialization") version "1.9.0"

Em build.gradle.kts (Module) adicione as seguintes dependéncias:

https://github.com/rafapil/AppFinanceiro

implementation("com.squareup.okhttp3:okhttp:4.12.0")
implementation("org.jetbrains.kotlinx:kotlinx-coroutines-android:1.7.3")
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.2")
implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.3")

Opcionalmente vocé pode definir as dependéncias no arquivo libs.versions.toml
(nao obrigatério)

Como estamos focando em padronizagcao vamos iniciar pela criacao dos nossos
Enums

Por se tratar de um enum que pode ser utilizado em outros momentos, foi
adicionado o package logging e dentro dele criamos trés enums sendo:

LogLevel:

enum class LogLevel(val value: String) {
DEBUG("DEBUG"),
INFO("INFO"),
WARN ("WARN") ,
ERROR("ERROR"),
FATAL ("FATAL")

}
LogType:

enum class LogType(val value: String) {
TBS("TBS"), // Troubleshooting
AUD("AUD"), // Audit
SEC("SEC"), // Security
BUS("BUS") // Business

}

Namespace:

enum class Namespace(val value: String) {
PRD("PRD"),
UAT ("UAT"),
DES("DES")

}

Agora precisamos implementar as classes de modelo para definir a padronizacao de

nossos logs
vamos criar duas classes sendo:

CieloLog

import com.projetos.seuprojeto.logging.LoglLevel
import com.projetos.seuprojeto.logging.LogType
import com.projetos.seuprojeto.logging.Namespace

data class Cielolog(
val logType: LogType,
val acronym: String,
val level: LogLevel,
val serviceName: String,
val namespace: Namespace,
val operation: String,
val content: String,
val duration: Long? = null,
val value: Double? = null,

val extra: CieloExtraInfo? null

)
CieloExtralnfo

data class CieloExtralnfo(
val userld: String? = null,
val transactionlId: String? = null,
val statusCode: Int? = null,
val exception: String? = null,
val errorMessage: String? = null,
val errorStack: List<String>? = null

)

Agora que temos a estrutura precisamos criar o objeto que possui as credenciais,
aqui é importante falar deixar claro que essa € uma recomendagao € caso possua
um modelo ja estruturado para lidar com credenciais pode asar o mesmo e pular
essa parte.

Mas é de suma importancia, jamais deixe as credenciais expostas no cédigo ou
envie as mesmas para um repositorio.

Para o nosso arquivo de credenciais vamos chama-lo de NetworkingConstants

object NetworkingConstants {
const val BASE URL = "<Sua URL para envio de logs>"
const val API KEY = "<Token gerado para enviar logs>"

}

Agora vamos criar mais um arquivo o CieloLogExport
Inicializando o arquivo vamos criar inicialmente os data class abaixo:

@Serializable
data class LogSerializable(
val logType: String,
val acronym: String,
val loglLevel: String,
@SerialName("service.name") val serviceName: String,
@SerialName("service.namespace") val namespace: String,
val operation: String,
val content: String,
val duration: Long? = null,
val value: Double? = null,
val extra: ExtraInfoDto? = null

)

@Serializable

data class ExtraInfoDto(
val userld: String? = null,
val transactionld: String? = null,
val statusCode: Int? = null,
val exception: String? = null,
val errorMessage: String? = null,
val errorStack: List<String>? = null

)

Vamos adicionar a parte que recebe as credenciais para realizar o envio dos logs:
private val client = OkHttpClient()

private const val API URL = NetworkingConstants.BASE URL

private const val API TOKEN = "Api-Token ${NetworkingConstants.API KEY}"

private val json = Json { encodeDefaults = false; ignoreUnknownKeys = true }

IMPORTANTE: Por esse exemplo se tratar de um Aplicativo Enviando Logs, no

exemplo adicionei a parte a sequir para utilizar um buffer, logo esta parte é
opcional porem recomendada.

Seguindo vamos implementar o buffer:

// Canal com buffer ilimitado (pode trocar por BUFFERED ou conflated)
private val logChannel = Channel<CieloLog>(Channel.UNLIMITED)

init {
// Inicializa o consumo da fila assim que o app sobe
CoroutineScope(Dispatchers.I0).launch {
for (log in logChannel) {
sendLogWithRetry(log)
}

}

fun log(log: CielolLog) {
CoroutineScope(Dispatchers.I0).launch {
logChannel.send(log)
}
}

E agora vamos adicionar a parte responsavel por montar a estrutura do log:

private suspend fun sendLogWithRetry(log: CielolLog, tentativas: Int = 3) {
val logSerializable = LogSerializable(
logType = log.logType.name,
acronym = log.acronym,
logLevel = log.level.name,
serviceName = log.serviceName,
namespace = log.namespace.name,
operation = log.operation,
content = log.content,
duration = log.duration,
value = log.value,
extra = log.extra?.let {
ExtraInfoDto(
userId = it.userld,
transactionId = it.transactionId,
statusCode = it.statusCode,
exception = it.exception,
errorMessage = it.errorMessage,

errorStack = it.errorStack

)
Por fim vamos estruturar o trecho responsavel por enviar o log para a API

val requestBody = json.encodeToString(listOf(logSerializable))
.toRequestBody("application/json; charset=utf-8".toMediaType())

val request = Request.Builder()
.url(API_URL)
.addHeader ("Authorization", API TOKEN)
.addHeader ("Content-Type", "application/json; charset=utf-8")
.post(requestBody)
.build()

E pra encerrar essa parte o trecho que cuida do retry, lembrando mais uma vez que
essa parte é opcional tanto que apenas deixo comentado algumas sugestdes que
podem ser implementadas.

repeat(tentativas) { tentativa ->
try {
client.newCall(request).execute().use { response ->
if (response.isSuccessful) {
println("Log enviado com sucesso")
return
} else {
println("Tentativa ${tentativa + 1}: erro HTTP
${response.code}")
}

}
} catch (e: Exception) {
println("Tentativa ${tentativa + 1} falhou:
${e.localizedMessagel}")

}

// Aguarda um pouco antes da préxima tentativa
kotlinx.coroutines.delay(1000L * (tentativa + 1))
}

// Fallback final: salva localmente ou imprime (pode gravar em arquivo
ou Room aqui)

salvarLoglLocal(log)
}

private fun salvarLogLocal(log: CielolLog) {
println("Fallback: salvando log local -> $log")
// Aqui vocé pode salvar no SharedPreferences, SQLite, Room, arquivo
etc.

}

Caso queira ver a classe completa vou deixar um link do Github Gist

Bem mas ainda falta alguns pontos e um deles e dar permissao de acesso
INTERNET no AndroidManifest

Entao adicione:
<uses-permission android:name="android.permission.INTERNET" />

Opcionalmente é possivel adicionar um arquivo para permitir o acesso ao endpoint
de logs e referenciar o mesmo no Manifest conforme exemplo:

<?xml version="1.0" encoding="utf-8"7>
<network-security-config>
<domain-config cleartextTrafficPermitted="true">
<domain includeSubdomains="true">SUA URL PARA ENVIO DE LOGS</domain>
</domain-config>
</network-security-config>

AndroidManifest:

<application
android:allowBackup="true"

android:networkSecurityConfig="@xml/network_security_config"

Pronto! Agora podemos usar a nossa instrumentacao para enviar os logs

Neste ponto criei duas funcdes simples, um para envio de log de eventos, Exemplo:
usuario efetuou o pagamento, houve um acesso a funcionalidade xpto, o tempo de
execucao total foi de 600ms.

https://gist.github.com/rafapil/4306caf53acf9454f9e68d51f19895f4

A primeira funcao é o: sendDatalog, que é voltada para o exemplo citado acima!

private fun sendDatalog() {
CieloLogExporter.log(

CielolLog(
logType = LogType.TBS,
acronym = "xpto",
level = LogLevel.WARN,
serviceName = "AppFinanceiro",
namespace = Namespace.PRD,
operation = "MainActivity",
content = "Falha ao buscar saldo",

duration = 617,

value = 250.99,

extra = CieloExtraInfo(
userId = "user-001",
transactionId = "txn-987654",
statusCode = 404,
exception = "Error in application",
errorMessage = "fail to connect",
errorStack = 1istOf()

}

A segunda funcao é o sendDatalLogError, essa ja recebe um parametro error do tipo
Exception que é usada para detalhar os dados da falha no log; observem que
dentro dela ocorre uma conversao do Array<strackTrace> para List<String> isso
permite criar uma lista de todos os eventos gerados de forma estruturada no log.

(Exemplo logo abaixo)

private fun sendDatalLogError(error: Exception) {
val stackErrorString: List<String> = error.stackTrace.map {
it.toString() }
CieloLogExporter.log(
CielolLog(

logType LogType.TBS,
acronym = "xpto",
level = LogLevel.ERROR,
serviceName = "AppFinanceiro",
namespace = Namespace.PRD,

operation = "MainActivity",
content = "Falha ao buscar saldo",
duration = 617,
value = 250.99,
extra = CieloExtralInfo(
userld = "user-001",
transactionId = "txn-987654",
statusCode = 404,
exception = "Error in application",
errorMessage = error.message,
errorStack = stackErrorString

}

Para forcar o erro foi adicionado um Throw em uma chamada de botao:

binding.addCardBtn.setOnClickListener {

try {
throw IllegalStateException("Er

} catch (e: Exception) {
sendDatalLogError(e)

Seque Github Gist com cédigo completo

Exemplo dos resultados:
Log de Eventos:

https://gist.github.com/rafapil/d58a8bafab2e4f215ce5ca4e893c7397

warn 2025-06-12 14:37:45.399 Log

loglevel
) WARN
timestamp ¥ status content
| 2025-06-12 14:37:45.399 WARN Falha 2 i
Service
| 2025-06-12 14:37:45.154 WARN Falha a .
service.name
| 2025-06-12 14:37:44.921 ERROR Falha a . .
AppFinanceiro
| 2025-06-12 14:25:17.664 ERROR Falha a
| 2025-06-12 14:25:15.632 WARN Falha a service.namespace
| 2025-06-12 14:25:01.062 WARN Falha a PRD
| 2025-06-12 14:25:00.765 WARN Falha a
| 2025-06-12 14:25:00.154 ERROR Falha a Other
| 2025-06-11 19:47:33.745 ERROR Falha a acronym
| 2025-06-11 19:47:33.441 ERROR Falha a ¥ XPto
| 2025-06-11 19:47:33.123 ERROR Falha a
dt.auth.origin
| 2025-06-11 19:47:32.820 WARN Falha a dt0c01.N2LVKOSDBEFVEPYQ4DIRHWEG
| 2025-06-11 19:47:32.577 WARN Falha a
| 2025-06-11 19:47:32.347 WARN Falha a dt.openpipeline.pipelines
| 2625-66-11 19:47:32.099 WARN Falha a logs:default
| 2025-06-11 19:47:31.865 WARN Falha a)
duration
| 2025-06-11 19:47:31.617 WARN Falha a 17
| 2025-06-11 19:47:31.411 ERROR Falha a
|2azs-06-11 19:47:31.091 ERROR Falha a event.type
| 2625-66-11 19:47:30.861 ERROR Falha a LOG
| 2025-06-11 19:47:30.483 ERROR Falha a
extra.errormessage
| 2025-06-11 19:31:02.612 WARN Falha a fail to connect
o ___ __ . __ - - _—__ . .
Log de Erro:

Observem a estrutura do stackTrace no log

Fa Falha ao buscar saldo

timestamp ¥ status content
|2625-06-12 14:37:45.399 WARN Falha a
|2925-06-12 14:37:45.154 WARN Falha a
|2025-06-12 14:37:44.921 ERROR Falha &
I 2025-06-12 14:25:17.664 ERROR

|2625-06-12 14:25:15.632 WARN Falha a
|2925-06-12 14:25:01.002 WARN Falha a
|2025-06-12 14:25:00.765 WARN Falha a
|2025-05-12 14:25:00.154 ERROR Falha a
|2625-06-11 19:47:33.745 ERROR Falha a
|2025-06-11 19:47:33.441 ERROR Falha a
|2925-06-11 19:47:33.123 ERROR Falha a
|2625-06-11 19:47:32.820 WARN Falha a
|2625-06-11 19:47:32.577 WARN Falha a
|2625-06-11 19:47:32.347 WARN Falha a
|2625-06-11 19:47:32.099 WARN Falha a
|2025-06-11 19:47:31.865 WARN Falha a
|2625-06-11 19:47:31.617 WARN Falha a
|2625-06-11 19:47:31.411 ERROR Falha a
|2625-06-11 19:47:31.091 ERROR Falha a
|2025-06-11 19:47:30.801 ERROR Falha a
|2625-06-11 19:47:30.483 ERROR Falha a
|2625-06-11 19:31:02.612 WARN Falha a
| 2025-06-11 19:31:02.302 WARN Falha a

2025-06-12 14:37:44.921 Log

Attributes

Search for key or value

Main

Service
service.name

AppFinanceiro

service.namespace

PRD

Other
acronym

xpto

dt.auth.origin
dt0c01.N2LVKO6DB6FV6PVQ4DIRHWBG

dt.openpipeline.pipelines

logs:default

duration

617

Create processing rule

€D 2025-06-1214:374921 Log X

A 617

timestamp ¥ status content event.type

|2025-06-12 14:37:45.399 WARN Falha a LoG

I 2025-06-12 14:37:45.154 WARN Falha a extra.errormessage

| 2025-06-12 14:37:44.921 ERROR Falha & Erro forcado para teste

|2025-06-1Z 14:25:17.664 ERROR Falha a

| 2025-06-12 14:25:15.632 WARN Falha a extrarrorstack
com.projetos.appfinanceiro.Activity.MainActivity.onCreate$lambda$1(MainActivity.kt:39)

|2025-96-12 14:25:01.002 WARN Falha a

|2025-06-12 14:25:00.765 WARN Falha a .

com.projetos.appfinanceiro.Activity.MainActivity.$r8$lambda$hJXTCALJ4AOFWF8Gpkkn6hZ19X8

I 2025-06-12 14:25:00.154 ERROR Falha a I(Unknown Source:0)

‘I 2025-06-11 19:47:33.745 ERROR Falha a

|2°25'°5'11 19:47:33.441 Falha a com.projetos.appfinanceiro.Activity.MainActivity$$ExternalSyntheticLambda3.onClick(D8$$Sy

| 2025-06-11 19:47:33.123 ERROR Falha a ntheticClass:0)

|2025-06-11 19:47:32.820 WARN Falha a android.viewView.performClick(View.java:8028)

| 2025-06-11 19:47:32.577 WARN Falha a android.viewView.performClickInternal(View.java:8005)

I APBAIFEE, EOBVEEEY UL Falha'q android.viewView.-$$Nest$mperformClickinternal(Unknown Source:0)

|zezs-as-11 19:47:32.099 WARN Falha a o . o
android.viewView$PerformClick.run(View.java:31229)

|2025-96-11 19:47:31.865 WARN Falha a
android.os.Handler.handleCallback(Handler.java:959)

|2025-06-11 19:47:31.617 WARN Falha a

|2025-96-11 10:47:31.411 ERROR Falha a android.os.Handler.dispatchMessage(Handler.java:100)

|2025-96-11 19:47:31.091 ERROR Falha a android.os.Looper.loopOnce(Looper.java:232)

|2025-06-11 19:47:30.801 ERROR Falha a android.os.Looper.loop(Looper.java:317)

| 2025-06-11 19:47:30.483 ERROR Falha a android.app.ActivityThread.main(ActivityThread java:8705)

| 2025-06-11 19:31:02.612 ALY Falhajla java.lang.reflect.Method.invoke(Native Method)

| 2025-06-11 19:31:02.302 WARN Falha a A

Dessa forma conseguimos estruturar o log e o envio de forma agndstica para nosso
App

Segue condigo completo para referencia aqui.

https://github.com/rafapil/AppFinanceiro/tree/dynatraceLogExporter

