Ola, amigos e amigas! Hoje trago mais um contelddo sobre logs — mas, dessa vez,
com o nosso querido Flutter.

Ok, vocé deve estar se perguntando: qual é a diferenca? Enviar logs nao é so fazer
uma requisicao para a APl e pronto?
E, para ser sincero, se vocé pensa assim... estd parcialmente certo.

Porém, existem alguns detalhes importantes aqui. Primeiro: vocé sabe o que esta
realmente sendo enviado? Tem ideia de como esses dados estao sendo
processados?

Complicou, né?

Pois bem, a ideia deste tutorial vai muito além de apenas enviar logs via HTTP. A
proposta é definir um padrao e um formato correto, que seja facilmente
interpretado e que nao exija manipulacdes bizarras para ser apresentado ou
metrificado (obter métricas).

Entao dada a nossa introducao bora colocar a mao na massa.

E caso queira também pode acompanhar pelo youtube

Porem antes de darmos inicio precisamos instalar o package Dio para conseguir
realizar as requisicdes http

use o comando: flutter pub add dio

detalhes podem ser obtidos aqui!

Logo de inicio vamos definir a estrutura para nossos logs:

https://pub.dev/packages/dio

Bem entao a primeira coisa a fazer é criar nossas classes de modelo

Vamos criar a classe log.dart

import 'dart:convert';

import 'log level.dart';
import 'log type.dart';
import 'namespace.dart';

class Log {

final LogType logType;
final String acronym;
final LogLevel level;
final String serviceName;
final Namespace namespace;
final String operation;
final dynamic content;
final int? duration;

final double? value;

final LogExtraInfo? extra;

Log ({
required
required
required
required
required
required
required

this
this

this

this.value,
this.extra,

.logType,
.acronym,
this.
this.
this.
.operation,
this.
this.duration,

level,
serviceName,
namespace,

content,

}

});

Map<String, dynamic> toJlson() {
return {

"timestamp': DateTime.now().toUtc().toIso08601String(),
'logType': logType.name,

‘acronym': acronym,

'level': level.name,

'service.name': serviceName,

'service.namespace': namespace.name,

'operation': operation,

‘content': content is String ? content : jsonEncode(content),

if (duration !'= null) 'duration': duration,
if (value !'= null) 'value': value,
if (extra !'= null) ...extra!.toJson(),

};

}

Agora vamos criar a classe de suporte log_extra_info.dart

Importante essa classe ela deve respeitar a sua regra de negocio entao
tenha em mente que ela deve possuir informacdes que facam sentido a
sua realidade. Outro ponto que gosto de usar em classes de suporte ao
log e deixar seus valores opcionais mas pensando sempre em como ela
pode apresentar os dados de negocio, troubleshooting e falhas criticas

(até o stackTrace completo sem guebrar o log todo).

class LogExtraInfo {

final String? userld;

final String? transactionId;
final int? statusCode;

final dynamic message;

final String? exception;

final String? errorMessage;
final List<String>? errorStack;

LogExtraInfo({
this.userlId,
this.transactionId,
this.statusCode,

this.message,
this.exception,
this.errorMessage,
this.errorStack,

})s
Map<String, dynamic> toJson() {
return {
if (userId !'= null) 'userId': userld,
if (transactionId !'= null) 'transactionId': transactionId,
if (statusCode !'= null) 'statusCode': statusCode,
if (message != null) 'message': message,
if (exception != null) 'exception': exception,
if (errorMessage != null) 'errorMessage': errorMessage,
if (errorStack '= null) 'errorStack': errorStack,
}

}
}

E claro os nossos enums: log level.dart, log_type.dart e namespace.dart

Apenas para entendimento geral é padrdao de mercado assim como boa
praticar ter uma segmentacao do LogType nestes quatro tipos:
Troubleshooting, Audit, Security e Business para uma identificacao
correta e aplicabilidade do log.

enum LogType {
TBS, // Troubleshooting
AUD, // Audit
SEC, // Security
BUS, // Business
}

enum LogLevel {
DEBUG,
INFO,
WARN,
ERROR,

}

enum Namespace {
prd,

uat,
des

}

Agora um ponto bem importante, no meu exemplo estou carregando as credenciais
a partir de um objeto na raiz do projeto, aqui fica a sua vontade/necessidade se
quiser carregar de outra forma por exemplo como o dotend, aqui vou deixar um
package que uso!

Se quiser seguir a mesma forma

Crie um arquivo chamado secrets.json na raiz do projeto, e adicione o seguinte
conteudo, com suas respectivas APl e secret:

{
"URL LOG API": "<SUA API PARA INGESTAO DE LOGS>",

"URL LOG API DEV": "<SUA KEY PARA INGESTAO DE LOGS>"

E por fim vamos criar o arquivo responsavel por fazer o envio dos logs o logger.dart

IMPORTANTE: Observe que a classe necessita de dois valores iniciais
sendo a URL e a apiKey, ambas estao definidas no arquivo anterior, mas
figue a vontade para alterar caso necessario.

import 'package:dio/dio.dart';

class Logger {
static late Dio dio;

static void initialize({required String endpoint, required String apiKey}) {
_dio = Dio(BaseOptions(
baseUrl: endpoint,
headers: {
'Content-Type': 'application/json; charset=utf-8',
"Authorization': 'Api-Token $apiKey',
b
connectTimeout: const Duration(seconds: 5),
receiveTimeout: const Duration(seconds: 5),

https://pub.dev/packages/flutter_dotenv
https://pub.dev/packages/flutter_dotenv

));
}

static Future<void> send(Log log) async {

try {

final response = await dio.post(
data: log,
)

if (response.statusCode !'= null && response.statusCode! > 299) {
print(
'"Erro ao enviar log: ${response.statusCode} -
${response.statusMessage}');
}
} on DioException catch (e) {
print('Erro de Dio ao enviar log: ${e.message}');
} catch (e) {
print('Erro desconhecido ao enviar log: $e');
}
}
}

Um pequeno parénteses aqui se vocé criou o arquivo secrets vai precisar carregar
os dados, entao na inicializacao do seu projeto adicione esse método:

Future<void> loadConfig() async {
final contents = await rootBundle.loadString('secrets.json');
config = json.decode(contents);

}
E agora passe os valores para a classe Logger
Logger.initialize(

endpoint: config?['URL _LOG API'],

apiKey: config?['URL LOG API DEV'],
);

Ufa! Tudo configurado.

Basta entao enviar nossos logs, e para isso basta criar uma chamada com estrutura
préoxima ao exemplo e seguindo o padrao pre estabelecido.

No exemplo abaixo trata um log de erro simples, mas lembre-se caso queira enviar
o errorStack é importante converter o mesmo em uma lista de strings dessa forma
a sua apresentacao no resultado ficara igualmente ao log da aplicacao.

Logger.send(Log(

logType: LogType.TBS,

acronym: ‘'smart',

level: LoglLevel.ERROR,

serviceName: 'smart recycling',

namespace: Namespace.prd,

operation: 'Obter localizacao',

content: 'Permissdes negadas pelo usuario',

extra: LogExtraInfo(
errorMessage: 'Permission not granted',
exception: e.exception

)));

E no préximo exemplo temos um log comum, observem gue apenas alteramos e
omitimos alguns valores

Logger.send(Log(
logType: LogType.BUS,
acronym: ‘'smart',
level: LogLevel.INFO,
serviceName: 'smart recycling',
namespace: Namespace.prd,
operation: 'Obter localizacao',
content: 'user location',
extra: LogExtralnfo(

message: 'Localizacao obtida com sucesso',

)));

E por fim temos o resultado em nossa ferramenta que esta recebendo os dados.

IMPORTANTE: Essa forma que exemplifiquei a vocés é totalmente agndstica e
funciona da mesma forma em qualquer ferramenta de mercado bastando alterar o
endpoint para envio dos logs, e dessa forma nao corremos o risco de alterar visoes
e ou estratégias de negdcios baseadas em logs uma vez gue sempre chegaram da
mesma forma.

LOgS and eVents Powered by Grail™

Explore your log data in simple mode. For a deeper analysis of logs, or to query Kubernetes events or business events, switch to advanced mode powered by DQL %

Advanced mode

Y Filter by

‘ O, Search attributes...

Attribute counts are estimated
based on sampled data.

> Favorites

v Available attributes
> Main
> Dynatrace
> Cloud services

> AWS

(Kl

Search results Execution time: 1s

Scanned data: 45.6 kB

[: Open with... H Create processing rule H Create metric] Format table

timestamp ¥ status content

2025-06-16 INFO user location

2025-06-16 INFO user 10

2025-06-16 16:49:28.178 INFO user location

2025-06-16 16:49:21.447 INFO user location

2025-06-16 16:49:20.532 INFO user location

2025-06-16 16:49:13.643 INFO user location

2025-06-16 16:49:13.604 INFO user location

info 2025-06-16 16:53:03.476 Log

Content

user location

Attributes

Search for key or value

Main

Create processing rule

loglevel

‘v INFO

Service

service.name

smart_recycling

service.namespace

prd

Other

